

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF SAFE DRINKING WATER

2017 ANNUAL DRINKING WATER QUALITY REPORT
PWSID #: 6430077 NAME: South Pymatuning Township
Este informe contiene información importante acerca de su agua potable. Haga que alguien lo traduzca para usted, ó hable con alguien que lo entienda. (This report contains important information about your drinking water. Have someone translate it for you, or speak with someone who understands it.)
WATER SYSTEM INFORMATION:
This report shows our water quality and what it means. If you have any questions about this report or concerning your water utility, please contact Burt DeVries, Water System Operator at 724-962-7856 between 8:00AM and 3:00PM Monday through Thursday We want you to be informed about your water supply. If you want to learn more, please attend any of our regularly scheduled meetings. They are held the second Wednesday of every month at 6:30 PM at the South Pymatuning Township Building located at 3483 Tamarack Drive, Sharpsville, Pa. 16150
SOURCE(S) OF WATER:
Our water source(s) is/are: (Name-Type-Location)
Our water source is the Shenango River. South Pymatuning Township purchases water from the Borough of
Sharpsville, (PWSID #6430055), who purchases bulk water from Aqua Pennsylvania's Shenango Valley Division,
(PWSID #6430054), (Aqua). Water for the Shenango Division comes from the Shenango River, which is fed by a
650 square mile watershed located north of Sharon, Pa.
A Source Water Assessment of our source(s) was completed by the PA Department of Environmental Protection (Pa. DEP). The Assessment has found that our source(s) of is/are potentially most susceptible to [insert potential Sources of Contamination listed in your Source Water Assessment Summary]. Overall, our source(s) has/have [little, moderate, high] risk of significant contamination. A summary report of the Assessment is available on the Source Water Assessment Summary Reports eLibrary web page: www.elibrary.dep.state.pa.us/dsweb/View/Collection-

10045. Complete reports were distributed to municipalities, water supplier, local planning agencies and PADEP offices. Copies of the complete report are available for review at the Pa. DEP Northwest

Regional Office, Records Management Unit at (814) 332-6899.

Some people may be more vulnerable to contaminants in drinking water than the general Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

MONITORING YOUR WATER:

We routinely monitor for contaminants in your drinking water according to federal and state laws. The following tables show the results of our monitoring for the period of January 1 to December 31, . The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data is from prior years in accordance with the Safe Drinking Water Act. The date has been noted on the sampling results table.

DEFINITIONS:

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Minimum Residual Disinfectant Level (MinRDL) - The minimum level of residual disinfectant required at the entry point to the distribution system.

Level 1 Assessment – A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Mrem/year = millirems per year (a measure of radiation absorbed by the body)

pCi/L = picocuries per liter (a measure of radioactivity)

ppb = parts per billion, or micrograms per liter (μ g/L)

ppm = parts per million, or milligrams per liter
(mg/L)

ppq = parts per quadrillion, or picograms per liter

ppt = parts per trillion, or nanograms per liter

contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Information about Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children.
Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.
South Pymatuning Township is
responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing
components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by
flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead
in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps
you can take to minimize exposure is available from the Safe Drinking Water Hotline or at
http://www.epa.gov/safewater/lead.
OTHER INFORMATION:
The Borough of Sharpsville, PWSID: 6430055 and the Shenango Valley Division of Aqua Pennsylvania, PWSID:
6430054, have provided South Pymatuning Township PWSID: 6430077 with water quality information monitored
during 2017. The information is attached as part of "South Pymatuning Township's Annual Drinking Water Quality
Report".

DETECTED CONTAMINANTS HEALTH EFFECTS LANGUAGE AND CORRECTIVE ACTIONS:
No health effects violations took place. As such, no health effects are noted.
OTHER VIOLATIONS:
South Pymatuning Township had no other violations.
- Court ymatering rownship had no other violations.

EDUCATIONAL INFORMATION:

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA and DEP prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA and DEP regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some

Detail Sample Information: 01JAN2017 - 31DEC2017

Sample .ocation	Contaminant ID	Analysis Result	MCL In Effect	Sample Date	Sample Type
701	CHLOROFORM (THM)	0.0242		01/11/2017	DISTRIBUTION
701	CHLOROFORM (THM)	0.0242		01/11/2017	DISTRIBUTION
701	BROMOFORM (THM)	0		01/11/2017	DISTRIBUTION
701	BROMODICHLOROMETHANE (THM)	900.0	•	01/11/2017	DISTRIBUTION
701	CHLORODIBROMOMETHANE (THM)	900000		01/11/2017	DISTRIBUTION
701	TRIHALOMETHANES	0.0308	0.08	01/11/2017	DISTRIBUTION
702	MONOCHLOROACETIC ACID	0		01/11/2017	DISTRIBUTION
702	DICHLOROACETIC ACID	0.0188		01/11/2017	DISTRIBUTION
702	TRICHLOROACETIC ACID	0.0187	•	01/11/2017	DISTRIBUTION
702	MONOBROMOACETIC ACID	0	•	01/11/2017	DISTRIBUTION
702	DIBROMOACETIC ACID	0		01/11/2017	DISTRIBUTION
702	HALOACETIC ACIDS (FIVE)	0.0375	90.0	01/11/2017	DISTRIBUTION
703	MONOCHLOROACETIC ACID	0		01/11/2017	DISTRIBUTION
703	DICHLOROACETIC ACID	0.0183	0.40	01/11/2017	DISTRIBUTION
703	TRICHLOROACETIC ACID	0.0176		01/11/2017	DISTRIBUTION
703	MONOBROMOACETIC ACID	0		01/11/2017	DISTRIBUTION
703	DIBROMOACETIC ACID	0		01/11/2017	DISTRIBUTION
703	HALOACETIC ACIDS (FIVE)	0.0359	90.0	01/11/2017	DISTRIBUTION
703	CHLOROFORM (THM)	0.0242		01/11/2017	DISTRIBUTION
703	CHLOROFORM (THM)	0.0242		01/11/2017	DISTRIBUTION
703	BROMOFORM (THM)	0		01/11/2017	DISTRIBUTION
703	BROMODICHLOROMETHANE (THM)	0.0061		01/11/2017	DISTRIBUTION
703	CHLORODIBROMOMETHANE (THM)	0.0006		01/11/2017	DISTRIBUTION
703	TRIHALOMETHANES	0.0309	0.08	01/11/2017	DISTRIBUTION
703	TOTAL COLIFORM PRESENCE	0		01/11/2017	DISTRIBUTION
801	TOTAL COLIFORM PRESENCE	0	٠	02/15/2017	DISTRIBUTION

Detail Sample Information: 01JAN2017 - 31DEC2017

Laboratory ID	Analysis Method	Analysis Date	Sample Received Date
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017 02/06/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017 02/06/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017 02/06/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017 02/06/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017	02/06/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	01/18/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017 02/06/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 01/17/2017	01/17/2017	02/06/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	01/11/2017 02/07/2017	02/07/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	02/15/2017 03/07/2017	03/07/2017

Detail Sample Information: 01JAN2017 - 31DEC2017

Sample cocation	Contaminant ID	Analysis Result	MCL In Effect	Sample Date	Sample Type
703	TOTAL COLIFORM PRESENCE	0		03/13/2017	DISTRIBUTION
701	CHLOROFORM (THM)	0.0294	•	04/12/2017	DISTRIBUTION
701	CHLOROFORM (THM)	0.0294	•	04/12/2017	DISTRIBUTION
701	BROMOFORM (THM)	0		04/12/2017	DISTRIBUTION
701	BROMODICHLOROMETHANE (THM)	0.0071	٠.	04/12/2017	DISTRIBUTION
701	CHLORODIBROMOMETHANE (THM)	0.0009	2/ • 3	04/12/2017	DISTRIBUTION
701	TRIHALOMETHANES	0.0374	0.08	04/12/2017	DISTRIBUTION
701	TOTAL COLIFORM PRESENCE	0		04/12/2017	DISTRIBUTION
702	MONOCHLOROACETIC ACID	0.0048		04/12/2017	DISTRIBUTION
702	DICHLOROACETIC ACID	0.0234	:	04/12/2017	DISTRIBUTION
702	TRICHLOROACETIC ACID	0.0188		04/12/2017	DISTRIBUTION
702	MONOBROMOACETIC ACID	0		04/12/2017	DISTRIBUTION
702	DIBROMOACETIC ACID	0		04/12/2017	DISTRIBUTION
702	HALOACETIC ACIDS (FIVE)	0.047	90.0	04/12/2017	DISTRIBUTION
703	MONOCHLOROACETIC ACID	0.0066	•	04/12/2017	DISTRIBUTION
703	DICHLOROACETIC ACID	0.0236		04/12/2017	DISTRIBUTION
203	TRICHLOROACETIC ACID	0.0179		04/12/2017	DISTRIBUTION
203	MONOBROMOACETIC ACID	0	•	04/12/2017	DISTRIBUTION
203	DIBROMOACETIC ACID	0		04/12/2017	DISTRIBUTION
203	HALOACETIC ACIDS (FIVE)	0.0481	90.0	04/12/2017	DISTRIBUTION
203	CHLOROFORM (THM)	0.029		04/12/2017	DISTRIBUTION
203	CHLOROFORM (THM)	0.029	•	04/12/2017	DISTRIBUTION
203	BROMOFORM (THM)	0		04/12/2017	DISTRIBUTION
203	BROMODICHLOROMETHANE (THM)	0.0071	•	04/12/2017	DISTRIBUTION
203	CHLORODIBROMOMETHANE (THM)	0.0009	٠	04/12/2017	DISTRIBUTION
203	TRIHALOMETHANES	0.037	0.08	04/12/2017	DISTRIBUTION

Detail Sample Information: 01JAN2017 - 31DEC2017

Laboratory ID	Analysis Method	Analysis Date	Sample Received Date
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	03/13/2017	04/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017 05/09/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017 05/09/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	04/12/2017	05/08/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	04/29/2017 05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	04/29/2017 05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	04/29/2017 05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	04/29/2017 05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	04/29/2017 05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	04/29/2017 05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	04/29/2017 05/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	04/29/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017 05/09/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017 05/09/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017 05/09/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017 05/09/2017	04/21/2017	05/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 04/21/2017 05/09/2017	04/21/2017	05/09/2017

Detail Sample Information: 01JAN2017 - 31DEC2017

Sample	Contaminant ID	Analysis Result	MCL In Effect	Sample Date	Sample Type
703	TOTAL COLIFORM PRESENCE	0		05/11/2017	DISTRIBUTION
802	TOTAL COLIFORM PRESENCE	0	•	06/15/2017	DISTRIBUTION
701	CHLOROFORM (THM)	0.0715	٠	07/11/2017	DISTRIBUTION
701	CHLOROFORM (THM)	0.0715		07/11/2017	DISTRIBUTION
701	BROMOFORM (THM)	0		07/11/2017	DISTRIBUTION
701	BROMODICHLOROMETHANE (THM)	0.0106	•	07/11/2017	DISTRIBUTION
701	CHLORODIBROMOMETHANE (THM)	0.0011	•	07/11/2017	DISTRIBUTION
701	TRIHALOMETHANES	0.0832	0.08	07/11/2017	DISTRIBUTION
702	MONOCHLOROACETIC ACID	0.007		07/11/2017	DISTRIBUTION
702	DICHLOROACETIC ACID	0.0285		07/11/2017	DISTRIBUTION
702	TRICHLOROACETIC ACID	0.032		07/11/2017	DISTRIBUTION
702	MONOBROMOACETIC ACID	0		07/11/2017	DISTRIBUTION
702	DIBROMOACETIC ACID	0		07/11/2017	DISTRIBUTION
702	HALOACETIC ACIDS (FIVE)	0.0675	90.0	07/11/2017	DISTRIBUTION
702	TOTAL COLIFORM PRESENCE	0		07/11/2017	DISTRIBUTION
703	MONOCHLOROACETIC ACID	0.0059		07/11/2017	DISTRIBUTION
703	DICHLOROACETIC ACID	0.0286	•	07/11/2017	DISTRIBUTION
703	TRICHLOROACETIC ACID	0.0335	•	07/11/2017	DISTRIBUTION
703	MONOBROMOACETIC ACID	0	٠	07/11/2017	DISTRIBUTION
703	DIBROMOACETIC ACID	0		07/11/2017	DISTRIBUTION
703	HALOACETIC ACIDS (FIVE)	0.068	90.0	07/11/2017	DISTRIBUTION
703	CHLOROFORM (THM)	0.0714	•	07/11/2017	DISTRIBUTION
703	CHLOROFORM (THM)	0.0714	•	07/11/2017	DISTRIBUTION
703	BROMOFORM (THM)	0		07/11/2017	DISTRIBUTION
703	BROMODICHLOROMETHANE (THM)	0.0109	٠	07/11/2017	DISTRIBUTION
703	CHLORODIBROMOMETHANE (THM)	0.0011		07/11/2017	DISTRIBUTION

Detail Sample Information: 01JAN2017 - 31DEC2017

			Sample
Laboratory ID	Analysis Method	Analysis Date	Received Date
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	05/11/2017	06/07/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	06/15/2017	06/15/2017 07/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017 08/09/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017 08/09/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017 08/09/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017 08/09/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	07/29/2017 08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	07/29/2017 08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	07/29/2017 08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	07/29/2017 08/09/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	07/11/2017	07/11/2017 08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	07/29/2017 08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	07/29/2017 08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	07/29/2017 08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	08/09/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	07/29/2017	07/29/2017 08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017 08/09/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017 08/09/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017 08/09/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017 08/09/2017	07/22/2017	08/09/2017

Detail Sample Information: 01JAN2017 - 31DEC2017

Sample Location	Contaminant ID	Analysis Result	MCL In Effect	Sample Date	Sample Type
703	TRIHALOMETHANES	0.0834	0.08	07/11/2017	DISTRIBUTION
803	TOTAL COLIFORM PRESENCE	0		08/10/2017	DISTRIBUTION
801	TOTAL COLIFORM PRESENCE	0		09/13/2017	DISTRIBUTION
701	CHLOROFORM (THM)	0.0461		10/10/2017	DISTRIBUTION
701	CHLOROFORM (THM)	0.0461		10/10/2017	DISTRIBUTION
701	BROMOFORM (THM)	0	٠.	10/10/2017	DISTRIBUTION
701	BROMODICHLOROMETHANE (THM)	0.011		10/10/2017	DISTRIBUTION
701	CHLORODIBROMOMETHANE (THM)	0.0017		10/10/2017	DISTRIBUTION
701	TRIHALOMETHANES	0.0588	0.08	10/10/2017	DISTRIBUTION
702	MONOCHLOROACETIC ACID	0		10/10/2017	DISTRIBUTION
702	DICHLOROACETIC ACID	0.0217		10/10/2017	DISTRIBUTION
702	TRICHLOROACETIC ACID	0.0189		10/10/2017	DISTRIBUTION
702	MONOBROMOACETIC ACID	0.0012		10/10/2017	DISTRIBUTION
702	DIBROMOACETIC ACID	0		10/10/2017	DISTRIBUTION
702	HALOACETIC ACIDS (FIVE)	0.0418	90.0	10/10/2017	DISTRIBUTION
703	MONOCHLOROACETIC ACID	0		10/10/2017	DISTRIBUTION
703	DICHLOROACETIC ACID	0.0096		10/10/2017	DISTRIBUTION
703	TRICHLOROACETIC ACID	0.0192		10/10/2017	DISTRIBUTION
703	MONOBROMOACETIC ACID	0		10/10/2017	DISTRIBUTION
703	DIBROMOACETIC ACID	0		10/10/2017	DISTRIBUTION
703	HALOACETIC ACIDS (FIVE)	0.0288	90.0	10/10/2017	DISTRIBUTION
703	CHLOROFORM (THM)	0.0435		10/10/2017	DISTRIBUTION
703	CHLOROFORM (THM)	0.0435		10/10/2017	DISTRIBUTION
703	BROMOFORM (THM)	0		10/10/2017	DISTRIBUTION
703	BROMODICHLOROMETHANE (THM)	0.0107	. •	10/10/2017	DISTRIBUTION
703	CHLORODIBROMOMETHANE (THM)	0.0017		10/10/2017	DISTRIBUTION

Detail Sample Information: 01JAN2017 - 31DEC2017

48			
Laboratory ID	Analysis Method	Analysis Date	Sample Received Date
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 07/22/2017	07/22/2017	08/09/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	08/10/2017	09/08/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	09/13/2017	10/06/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	LIQUID LIQUID EXT. & GC 552.2	10/14/2017	11/03/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017	10/13/2017	11/07/2017
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017 11/07/2017	10/13/2017	11/07/2017

Detail Sample Information: 01JAN2017 - 31DEC2017

Sample cocation	Contaminant ID	Analysis In Result Effe	MCL In Effect	Sample Date	Sample Type
703	TRIHALOMETHANES	0.0559	0.08	10/10/2017	0.08 10/10/2017 DISTRIBUTION
703	TOTAL COLIFORM PRESENCE	0		10/10/2017	10/10/2017 DISTRIBUTION
801	TOTAL COLIFORM PRESENCE	0		11/15/2017	11/15/2017 DISTRIBUTION
703	TOTAL COLIFORM PRESENCE	0		12/19/2017	12/19/2017 DISTRIBUTION

Detail Sample Information: 01JAN2017 - 31DEC2017

Laboratory ID	Analysis Method	Analysis Date	Sample Received Date
AQUA PENNSYLVANIA, INC	PURGE & TRAP -GC/MS VOCS 524.3 10/13/2017 11/03/2017	10/13/2017	11/03/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	10/10/2017	10/10/2017 11/08/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	11/15/2017	11/15/2017 12/07/2017
AQUA PENNSYLVANIA - SHENANGO	GWR-ONPG-MUG (MMO-MUG)	12/19/2017	12/19/2017 01/08/2018

*** PWSID = 6430077 | SYSTEM NAME= SOUTH PYMATUNING *** Summary Sample Information: 01JAN2017 - 31DEC2017

Contaminant ID	Sample Period Start Date	Sample Period End Date	Last Sample Date	Number of Routine Samples Required	Number of Routine Samples Taken	No. Routine Samples Out of Compliance	Number Of Check Samples Required	Number Of Check Samples Taken	No. Check Samples Out Of Compliance	Average Result	Sample Received Date
CHLORINE	12/01/2017	12/01/2017 12/31/2017 12/19/2017	12/19/2017	-	~	0	*	0	0	1.7	01/08/2018
CHLORINE	11/01/2017	11/01/2017 11/30/2017 11/15/2017	11/15/2017	~	_	0		0	0	8	12/07/2017
CHLORINE	10/01/2017	10/01/2017 10/31/2017 10/10/2017	10/10/2017	_		0	•	0	0	1.7	11/08/2017
CHLORINE	09/01/2017	09/01/2017 09/30/2017 09/13/2017	09/13/2017	~	_	0		0	0	1.2	10/06/2017
CHLORINE	08/01/2017	08/01/2017 08/31/2017 08/10/2017	08/10/2017	~	_	0		0	0	1.7	09/08/2017
CHLORINE	07/01/2017	07/01/2017 07/31/2017 07/11/2017	07/11/2017	_	_	0	•	0	0	2.1	08/09/2017
CHLORINE	06/01/2017	06/01/2017 06/30/2017 06/15/2017	06/15/2017	_	_	0		0	0	-	07/07/2017
CHLORINE	05/01/2017	05/01/2017 05/31/2017 05/11/2017	05/11/2017	~	_	0	•	0	0	1.1	06/07/2017
CHLORINE	04/01/2017	04/01/2017 04/30/2017 04/12/2017	04/12/2017	~	~	0		0	0	1.7	05/08/2017
CHLORINE	03/01/2017	03/01/2017 03/31/2017 03/13/2017	03/13/2017	~	~	0		0	0	1.7	04/06/2017
CHLORINE	02/01/2017	02/01/2017 02/28/2017 02/15/2017	02/15/2017	~	~	0		0	0	2.4	03/07/2017
CHLORINE	01/01/2017	01/01/2017 01/31/2017 01/11/2017	01/11/2017	_	_	0	•	0	0	1.8	02/07/2017

~

2017

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF SAFE DRINKING WATER

ANNUAL DRINKING WATER QUALITY REPORT

PWSID #: 6430055 NAME: Borough of Sharpsville
Este informe contiene información importante acerca de su agua potable. Haga que alguien lo traduzca para uste ó hable con alguien que lo entienda. (This report contains important information about your drinking water. Ha someone translate it for you, or speak with someone who understands it.)
WATER SYSTEM INFORMATION:
This report shows our water quality and what it means. If you have any questions about this report or concerning your water utility, please contact Ken Robertson, Sharpsville Borough at (724)962-7896. We want you to informed about your water supply. If you want to learn more, please attend any of our regularly scheduled meeting. They are held the second Wednesday of every month at 7:00 PM at the Borough Building located at 1 South Waln Street.
SOURCE(S) OF WATER:
Our water source(s) is/are: (Name-Type-Location)
Our water source is the Shenango River. The Borough of Sharpsville purchases bulk water from Aqu
Pennsylvania's Shenango Valley Division (Aqua). Water for the Shenango Valley Division comes form the
Shenango River, which is fed by the 650 square mile watershed located north of Sharon, Pennsylvania.

A Source Water Assessment of our source(s) was completed by the PA Department of Environmental Protection (Pa. DEP). The Assessment has found that our source(s) of is potentially most susceptible transportation corridors, railroads and bridges, boating, utility substations, power plants, auto repair shops, stormwater runoff, and package plants/wastewater treatment plants. Overall, our source has little to moderate risk of significant contamination. A summary report of the Assessment is available on the Source Water Assessment Summary Reports eLibrary web page: www.elibrary.dep.state.pa.us/dsweb/View/Collection-10045. Complete reports were distributed to municipalities, water supplier, local planning agencies and PADEP offices. Copies of the complete report are available for review at the Pa. DEP Northwest Regional Office, Records Management Unit at (814) 332-6899.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the *Safe Drinking Water Hotline* (800-426-4791).

MONITORING YOUR WATER:

We routinely monitor for contaminants in your drinking water according to federal and state laws. The following tables show the results of our monitoring for the period of January 1 to December 31, 2016. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data is from prior years in accordance with the Safe Drinking Water Act. The date has been noted on the sampling results table.

DEFINITIONS:

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Minimum Residual Disinfectant Level (MinRDL) - The minimum level of residual disinfectant required at the entry point to the distribution system.

Level 1 Assessment – A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Mrem/year = millirems per year (a measure of radiation absorbed by the body)

pCi/L = picocuries per liter (a measure of radioactivity)

ppb = parts per billion, or micrograms per liter (μ g/L)

ppm = parts per million, or milligrams per liter
(mg/L)

ppq = parts per quadrillion, or picograms per liter

ppt = parts per trillion, or nanograms per liter

DETECTED SAMPLE RESULTS:

Chemical Cont		T					<u></u>	
Contaminant	MCL in CCR Units	MCLG	Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination
Turbidity (Aqua)	TT ≤ 0	N/A	0.24	0.03-0.24	NTU	2016	N	Soil Runoff
Chlorine- Distribution System	MRDL=4	MRDLG=4	2.25	1.3-2.25	ppm	2017	N	Water additive used to control microbes.
Arsenic (Aqua)	10	0	0.012	0.012	ppb	July 17, 2017	N	Erosion of natural deposit. Runoff from orchards, runoff from glass and electronics production wastes.
Barium (Aqua)	2	2	0.017	0.017	ppb	July 17, 2017	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Chromium (Aqua)	100	100	2.2	2.2	ppb	July 17, 2017	N	Discharge from steel and pulp mills; Erosion of natural deposits.
Fluoride (Aqua)	2	2	0.82	0.82	ppm	July 17, 2017	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Chlorite (Aqua)	1	1	0.91	0.089-0.91	ppm	2017	N	By-product of drinking water chlorination
Atrazine (Aqua)	3	3	0.53	0.53	ppb	2017	N	Runoff from herbicide used on row crops
HAA5	60	N/A	29.3	19.3-70.2	ppb	2017	N	By-product of drinking water disinfection.
ТТНМ	80	N/A	48.1	18.7-80.0	ppb	2017	N	By-product of drinking water disinfection.

^{*}EPA's MCL for fluoride is 4 ppm. However, Pennsylvania has set a lower MCL to better protect human health.

Entry Point Disin	Entry Point Disinfectant Residual									
Contaminant	Minimum Disinfectant Residual	Lowest Level Detected	Range of Detections	Units	Sample Date	Violation Y/N	Sources of Contamination			
Total Chorine Entry Point (Aqua)	0.2	0.32	0.32-3.99	ppm	2017	N	Water additive used to control microbes.			

Contaminant	Action Level (AL)	MCLG	90 th Percentile Value	Units	# of Sites Above AL of Total Sites	Violation Y/N	Sources of Contamination
Lead	15	0	3.5	ppb	0	N	Corrosion of household plumbing.
Copper	1.3	1.3	0.17	ppm	0	N	Corrosion of household plumbing.

Contaminants	π	MCLG	Assessments/ Corrective Actions	Violation Y/N	Sources of Contamination
Total Coliform Bacteria	Any system that has failed to complete all the required assessments or correct all identified sanitary defects, is in violation of the treatment technique requirement	N/A	See detailed description under "Detected Contaminants Health Effects Language and Corrective Actions" section	N	Naturally present in the environment.

Contaminants	MCL	MCLG	Positive Sample(s)	Violation Y/N	Sources of Contamination
E. coli	Routine and repeat samples are total coliform-positive and either is <i>E. coli</i> -positive or system fails to take repeat samples following <i>E. coli</i> -positive routine sample or system fails to analyze total coliform-positive repeat sample for <i>E. coli</i> .	0	0	N	Human and animal fecal waste.

Contaminant	MCL	MCLG	Level Detected	Sample Date	Violation Y/N	Source of Contamination
Turbidity	TT=1 NTU for a single measurement	0			N	Soil runoff
	TT= at least 95% of monthly samples<0.3 NTU				N	

Contaminant	Range of % Removal Required	Range of percent removal achieved	Number of quarters out of compliance	Violation Y/N	Sources of Contamination
TOC	35-45	100	0	N	Naturally present in the environment

EDUCATIONAL INFORMATION:

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of
 industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff,
 and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA and DEP prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA and DEP regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Information about Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Borough of Sharpsville is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

OTHER INFORMATION:

Monitoring for Cryptosporidium (a naturally occurring microbial pathogen) was conducted under a national program in 2009 on raw (untreated) water samples from our source, the Shenango River. Cryptosporidium was detected in 3 of 24 raw water samples, with an average count of 0.027 oocysts per liter. These levels are in the lowest category of risk for raw (untreated) water. Aqua's water treatment processes are designed to remove Cryptosporidium, but complete removal of all organisms at all times cannot be guaranteed. For this reason, immune-compromised individuals (people with weakened immune systems) are encouraged to consult their doctor regarding appropriate precautions to avoid infection.

The 1996 amendments to the Safe Drinking Water Act (SDWA) require that once every five years, the U.S. Environmental Protection Agency (EPA) issue a new list of no more than 30 unregulated contaminants to be monitored by public water systems (PWSs). The Unregulated Contaminant Monitoring Rule (UCMR) provides EPA and other interested parties with scientifically valid data on the occurrence of contaminants in drinking water. These data serve as a primary source of occurrence and exposure information that the agency uses to develop regulatory decisions. If a PWS monitoring for UCMR finds contaminants in its drinking water, it must provide the information to its customers in this annual water quality report. Below is a table of the results of Aqua PA's UCMR monitoring in 2013. All other contaminants tested during UCMR were Not Detected.

Unregulated Contaminants L Unregulated Contaminant	Average Detection	Range of Detections	MCL
Hexavalent chromium, ppb	0.07	ND - 0.12	N/A
Strontium, ppb	71	63-79	N/A
Vanadium, ppb	0.11	ND - 0.22	N/A

Aqua Pennsylvania, Inc. 665 S. Dock Street Sharon, PA 16146 T: 724.981.1200 F: 724.981.2446 www.aquapennsylvania.com

March 23, 2018

South Pymatuning Township Attn: 3493 Tamarack Drive Sharpsville, PA 16150

RE: Water Quality Annual Data

Dear

The Safe Drinking Water Act Amendments of 1996 require that each community water system issue a Consumer Confidence Report (CCR) to each customer annually beginning in 1999. The CCR for 2017 is due by July 1, 2018.

The PA DEP is the primary agency responsible for administering this regulatory requirement and, as such, each has very specific requirements that must be followed in the preparation of the CCR. As a water system that sells water to another community water system, we must deliver to you a listing of the appropriate water quality analytical data resulting from testing of water in our water system during 2017. That data is enclosed for your use.

If you have any specific questions relating to the interpretation of the water quality data shown on the enclosed report, please let me know. However, you should consult your state regulatory agency for specific guidance relating to the format and content of the CCR they require of you.

Very truly yours.

William D. Young Laboratory Director

Level Found	Range of Detections	MCL	MCLG	Sample Date	Violation Y/N	Major Sources in Drinking Water	
2.0	2.0-2.7	MRDL = 4	MRDLG = 4	2017	N	Water additive used to control microbes	
100.0%	100.0-100.0%	ТТ	NA	2017	N	Soil runoff	
0.25	0.02-0.25	TT	NA	2017	N	Soil runoff	
on (TOC)							
Range of Removal Required	Range of Percent Removal Achieved	and removed the provide the con-		Sample Date	Violation Y/N	Sources of Contamination	
35-45	29.0-53.8	()	2017	N	Naturally present in the environment	
ds							
1.2	NA	10	0	2017	N	Erosion from natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	
0.017	NA	2	2	2017	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	
2.2	NA	100	100	2017	N	Discharge from steel and pulp mills; Erosion of natural deposits	
0.82	NA	2	2	2017	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories	
arterly avera	ages. Complia	nce is bas	ed on a rui	nning annu	ial average	nd is the highest annual of quarterly results, not a single	
55.7	19.3-70.2	60	NA	2017	N	Byproduct of drinking water chlorination	
58.4	18.7-83.5	80	NA	2017	N	Byproduct of drinking water chlorination	
0.28	0.09-0.42	1	0.8	2017	N	Byproduct of drinking water chlorination	
0.91	ND-0.91	1	0.8	2017	N	Byproduct of drinking water chlorination	
Compounds							
0.27	NA	3	3	2017	N	Runoff from herbicide used on row crops	
Minimum Level Found	Minimum Disinfectant Residual	Range of Detection	Sample Date	Violation Y/N	Major Sou	Major Sources in Drinking Water	
0.3	0.2	0.3-4.0	2017	N	Water add	litive used to control microbes	
	 					Water additive used to control microbes	
	Found 2.0 100.0% 0.25 on (TOC) Range of Removal Required 35-45 ds 1.2 0.017 2.2 0.82 lucts- For Halarterly average of Result S5.7 58.4 0.28 0.91 compounds 0.27 ctant Residual Minimum Level Found	Found Detections 2.0 2.0-2.7 100.0% 100.0-100.0% 0.25 0.02-0.25 On (TOC) Range of Removal Required Removal Achieved 35-45 29.0-53.8 Oscillations O	Found Detections MICL	Pound Detections MCL MCLG	Pound Detections MCL MCLG Date	Pound Detections MCL MCLG Date Y/N	

^{*}Chlorine Dioxide used for pre-oxidation, not disinfection.

Monitoring for Cryptosporidium (a naturally occurring microbial pathogen) was conducted under a **national program in 2009 on raw (untreated) water** samples from our source, the Shenango River. Cryptosporidium was detected in 3 of 24 raw water samples, with an average count of 0.027 per liter. These levels are in the lowest category of risk for raw (untreated) water. Our water treatment processes are designed to remove Cryptosporidium, but complete removal of all organisms at all times cannot be guaranteed. For this reason, immuno-compromised individuals (people with weakened immune systems) are encouraged to consult their doctor regarding appropriate precautions to avoid infection.

Lead and Copper	90th Percentile	Total Number of Samples	Samples Exceeding Action Level	Action Level	MCLG	Sample Date	Violation Y/N	Major Sources in Drinking Water
Copper, ppm	0.18	34	0	AL=1.3	1.3	2016	N	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
Lead, ppb	2.8	34	0	AL=15	0	2016	N	Corrosion of household plumbing systems; Erosion of natural deposits

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Aqua is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The 1996 amendments to the Safe Drinking Water Act (SDWA) require that once every five years, the U.S. Environmental Protection Agency (EPA) issue a new list of no more than 30 <u>unregulated contaminants</u> to be monitored by public water systems (PWSs). The Unregulated Contaminant Monitoring Rule (UCMR) provides EPA and other interested parties with scientifically valid data on the occurrence of contaminants in drinking water. These data serve as a primary source of occurrence and exposure information that the agency uses to develop regulatory decisions. If a PWS monitoring for UCMR3 finds contaminants in its drinking water, it must provide the information to its customers in this annual water quality report. Below is a table of the results of our UCMR3 monitoring in 2013. All other contaminants tested during UCMR3 were Not Detected.

Unregulated Contaminants D Unregulated Contaminant	Average Detection	Range of Detections	MCL	
Hexavalent chromium, ppb	0.07	ND - 0.12	NA	
Strontium, ppb	71	63 - 79	NA	
Vanadium, ppb	0.11	ND - 0.22	NA	

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

ESTE INFORME CONTIENE INFORMACION MUY IMPORTANTE SOBRE SU AGUA DE BEBER. TRADUZCALO O HABLE CON ALGUIEN QUE LO ENTIENDA BIEN.

Monitoring Requirements Not Met for Aqua Pennsylvania, Inc. - Shenango Valley Division

Our water system violated a monitoring requirement in 2018. Even though this was not an emergency, as our customer you have a right to know what happened and what we did to correct the situation.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. On January 16, 2018, we did not complete all of the monitoring for chlorine dioxide and chlorite and therefore, cannot be sure of the quality of our drinking water during that time.

What should I do?

There is nothing you need to do at this time. You may drink the water. This is not an emergency. If it had been, you would have been notified immediately.

The table below lists the contaminants we did not properly test for, how often we are supposed to sample for chlorine dioxide and chlorite, how many samples we took, when samples should have been taken, and the date on which follow-up samples were taken.

Contaminant	Required sampling frequency	Number of samples taken	When all samples should have been taken	When samples were taken
Chlorine Dioxide and Chlorite	Daily	0	1/16/18	1/17/18

What happened? What was done?

The water treatment plant feeds chlorine dioxide for oxidation into the raw water entering the water treatment plant. As such, we are required to test for chlorine dioxide and chlorite (a disinfection byproduct) in the water leaving the plant on a daily basis. On 1/16/2018, this test was inadvertently missed. Because the test was not done, we cannot be certain of the water quality as it pertains to chlorine dioxide and chlorite on that day. Required monitoring resumed on 1/17/2018 and the results were within our required limits.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail. For more information, please contact:

Responsible Person	System Name	Address (Street)
Zach Martin, Plant Manager	Aqua PA Shenango	665 South Dock Street
Phone Number	System PWSID#	Address (City, State, Zip)
724.347.7418	PA6430054	Sharon PA 16146

This notice is being sent to you by Aqua Pennsylvania, Inc.

PWS ID#: PA6430054 Date distributed: May 2018